A High - Accuracy Algorithm for Surface Defect Detection of Steel Based on DAG - SVM
نویسندگان
چکیده
The quality of the steel surface is a crucial parameter. An improved method based on machine vision for steel surface defects detection is proposed. The experiment is based on 20 images for each of 6 distinct steel defects, a total of 120 defective images achieved from the detection system. 128 different features are extracted from the images and feature dimensions are reduced by the principle component analysis (PCA) based on the sample correlation coefficient matrix. Hierarchical clustering by Euclidean distance is implemented to find defect characteristics differentiation, the steel surface defects are classified based on directed acyclic graph support vector machine (DAG-SVM). The experimental results indicate that this method can recognize more than 98 % of the steel surface defects at a faster speed that can meet the demands on the steel surface quality online detection. Copyright © 2013 IFSA.
منابع مشابه
Phased array ultrasonic imaging using an improved beamforming based total focusing method for non destructive test
One of the novel ultrasonic phased array based scanning methods for ultrasonic imaging in non-destructive test is total focusing method (TFM). This method employs maximum available information of the phased array elements and leads to an improved defect detection accuracy compared to conventional scanning methods. Despite its high detection accuracy, TFM behaves weak in distinguishing the real ...
متن کاملPhased array ultrasonic imaging using an improved beamforming based total focusing method for non destructive test
One of the novel ultrasonic phased array based scanning methods for ultrasonic imaging in non-destructive test is total focusing method (TFM). This method employs maximum available information of the phased array elements and leads to an improved defect detection accuracy compared to conventional scanning methods. Despite its high detection accuracy, TFM behaves weak in distinguishing the real ...
متن کاملMulti-Damage Detection for Steel Beam Structure
Damage detection has been focused by researchers because of its importance in engineering practices. Therefore, different approaches have been presented to detect damage location in structures. However, the higher the accuracy of methods is required the more complex deliberations. Based on the conventional studies, it was observed that the damage locations and its size are associated with dynam...
متن کاملSUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملClassification of polarimetric radar images based on SVM and BGSA
Classification of land cover is one of the most important applications of radar polarimetry images. The purpose of image classification is to classify image pixels into different classes based on vector properties of the extractor. Radar imaging systems provide useful information about ground cover by using a wide range of electromagnetic waves to image the Earthchr('39')s surface. The purpose ...
متن کامل